SCIENCE DIRECT.

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 3096-3100

Synthesis and SAR of α-sulfonylcarboxylic acids as potent matrix metalloproteinase inhibitors

Yue-Mei Zhang,* Xiaodong Fan, Bangping Xiang, Devraj Chakravarty, Robert Scannevin, Sharon Burke, Prabha Karnachi, Kenneth Rhodes and Paul Jackson

Drug Discovery, Johnson & Johnson Pharmaceutical Research and Development, 1000 Route 202, Raritan, NJ 08869, USA

Received 16 February 2006; revised 20 March 2006; accepted 21 March 2006

Abstract—A series of novel carboxylic acid-based α-sulfone MMP inhibitors have been synthesized and the in vitro enzyme SAR is discussed. A potential binding mode in the active site of the MMP-9 homology model was highlighted. These compounds are potent MMP-9 inhibitors and are selective over MMP-1.

© 2006 Elsevier Ltd. All rights reserved.

The wide variety of matrix metalloproteinases (MMPs) normally participate in many different homeostatic tissue remodeling events. The over-expression of MMP activities has been shown to play a negative role in a variety of disease states, such as oncology, ^{1a} rheumatoid arthritis, ^{1b} cardiovascular diseases, ^{1c} and neurological disorders. ^{1d} Therefore, design and synthesis of potent, small molecule MMP inhibitors (MMPIs) has been an area of intense focus in medicinal chemistry.

To date the hydroxamate-based compounds have attracted the most interest due to their high in vitro potency. With the disclosure of the spiro-β-sulfone hydroxamate 1 as a clinical candidate, reports of a series of hydroxamate-based α-sulfone MMPIs have followed,^{2,3} exemplified by structure 2 (Fig. 1).³ The enzyme profile and ADME properties of the α-sulfone hydroxamates were reported to be superior to the β-sulfone series.³ Nevertheless, it has been suggested that the poor pharmacokinetic (PK) profiles of the hydroxamate inhibitors may be associated with in vivo toxicity.⁴ The carboxylic acids, the precursors of the hydroxamates, have been shown to demonstrate more favorable PK properties.4 However, the simple replacement of hydroxamate by carboxylic acid as zinc-binding group (ZBG) causes 100- to 2000-fold loss in potency. More-

Figure 1. Selected MMPIs.

over, high serum protein binding is typically suffered by carboxylic acid MMPIs.⁶ A representative carboxylic acid MMPI is tanomastat (3) with moderate MMP activities (Fig. 1).

Our program has focused on the discovery of potent and selective MMPIs. Here, we disclose a novel family of carboxylic acid-based α -sulfone inhibitors 4 with excellent enzyme potency and good selectivity over MMP-1. We will describe the enzyme SAR and highlight a potential binding mode with S_1' interaction in the MMP-9 homology model. The impact of the α -substitution of 4 on the MMP inhibitory activities will also be discussed.

HO
$$R^1$$
 R^2 $X = \text{bond, 0, } \leftarrow$

¹⁽RS-130,830)

1(RS-130,830)

2 (X = O or N-R)

| C₅₀(nM): | MMP-2: 11; MMP-3: 143; | MMP-9: 301; MMP-13: 1470

Keywords: MMP inhibitors; MMP-9; MMP-2; α-sulfonylcarboxylic acids

^{*}Corresponding author. Tel.: +1 908 281 6788; e-mail: xufangymz@yahoo.com

Scheme 1. Reagents and conditions: (a) HSPh(4-Br or -F), TEA, CH₂Cl₂; (b) OXONE®, MeOH/THF (1:1); (c) R²Br, K₂CO₃, 18-crown-6(cat.), acetone, reflux; (d) i—when X = bond, (4-R³)PhB(OH)₂, 5 mol% Pd(PPh₃)₄, Na₂CO₃ (2 M), toluene, 90 °C; ii—when X = acetylenyl, H = -Ph(4-R³), 5 mol% CuI, 5 mol% Pd(PPh₃)₂Cl₂, TEA, 60 °C; iii—when X = O, (4-R³)PhOH, K₂CO₃, DMA, 90 °C; iv—when X = -NR'R'' - HNR'R'' - Ph(4-R³), K₂CO₃, DMF, 90 °C; (e) TFA/CH₂Cl₂ (1:2); (f) Zn/HgCl₂, concd HCl, reflux.

The carboxylic acid **4** was synthesized as shown in Scheme 1. Reaction of α -bromo *tert*-butyl ester **5**⁷ with thiophenols gave sulfide **6**. Oxidation of **6** with OX-ONE® followed by alkylation at the acidic α -carbon with halides gave sulfone **7** (n=2). α -Sulfinyl analogs **7** (n=1) may be obtained by controlling the reaction time and equivalents of OXONE® used. Manipulation of aryl bromide or fluoride of **7** via various chemical transformations such as Suzuki coupling, Sonagishiro reaction, and simple displacement of fluorine with phenols or amines, followed by TFA deprotection of Boc, yielded a variety of carboxylic acids **4**. Further reduction of phthalimide **4** according to Hall's procedure8 gave phthalimidine **4f**.

To rapidly explore the SAR of α -substitutions of 4, an alternative synthesis from α -bromo lactone 8 was pursued which is outlined in Scheme 2. Displacement of the bromide 8 with 4-bromothiophenol gave 9. The attempts of trans-esterification of lactone 9 into methyl

Scheme 2. Reagents and conditions: (a) HSPh(4-Br), TEA, CH₂Cl₂; (b) NaOH (1.0 equiv), DMF/H₂O (4:1); (c) MeI (1.5 equiv), NaHCO₃ (1.0 equiv), 18-crown-6 (0.1 equiv); (d) TsCl, TEA, CH₂Cl₂; (e) m-CPBA, CH₂Cl₂; (f) K₂CO₃, DMF; (g) (4-Cl)PhB(OH)₂, 5 mol% Pd(PPh₃)₄, Na₂CO₃ (2 M), toluene, 90 °C; (h) **12a**: 0.5 N HCl/AcOH (1:1), 100 °C; **12b**: aq LiOH, THF/MeOH; i—PhSH, NaOMe, toluene, 90 °C

ester 10 failed under various conditions. Finally, hydrolysis and alkylation with methyl iodide in one-pot reaction furnished 10. Tosylation of 10 and subsequent oxidation gave 11. The reaction of 11 with various nucleophiles, followed by Suzuki coupling and hydrolysis, yielded 12 (exemplified by 12a and 12b). α-Spiro sulfone 13 was obtained from 11 by base-promoted intramolecular cyclization. Further manipulation of electron-deficient cyclopropane 13 via Michael-type addition followed by hydrolysis gave the ring-opened product 14.

Initially, as we fixed the P'_1 moiety as a linear 4-chloro biaryl group, a series of α -sulfonylcarboxylic acids with diverse α -side chains were synthesized and their inhibitory activities were examined against MMP-2 and MMP-9 (Table 1). All compounds in Table 1 demonstrated moderate to potent activity against MMP-2. However, an amide or phthalimide side chain seems critical for MMP-9 inhibitory activity. Simple hydrophobic side chains (4a and 14) gave no MMP-9 activity. Compounds 12a and 12b were compared, the absence of a carbonyl

Table 1. In vitro IC50 and SAR of $\alpha\text{-substitution}$ of compounds 4

Compound	\mathbb{R}^1	\mathbb{R}^2	MMP-2 ^a	MMP-9 ^a
4a	-(CH ₂) ₂ CH ₃	Н	792	10,005
14	-(CH ₂) ₂ SPh	Н	295	>10,000
4b	-CH ₂ Phth	Н	556	1049
4c	-(CH ₂) ₂ Phth	Н	1.8	14
4d (HOHNOC-)	-(CH ₂) ₂ Phth	Н	0.62	1.4
4e	-(CH ₂) ₃ Phth	Н	145	2124
4f	See Scheme 1		8.6	96.5
12a	-(CH ₂) ₂ Phth	-CH ₃	52	114
12b	See Scheme 2	-CH ₃	3060	>10,000

^a IC₅₀ (nM) the average value of at least two experiments.

functionality on 12b resulted in no inhibition of MMP-9. Phthalimidine 4f gave an IC₅₀ of 8.6 nM on MMP-2 and about 7-fold loss of MMP-9 inhibition compared to 4c. This observation was consistent with the reported work on β-sulfone hydroxamate inhibitors. The length of the side chain was also important. The optimal ethyl phthalimido derivative 4c was over 150-fold more potent than the propyl homolog 4e and 75-fold more than methyl analog 4b. Fully α-substituted 12a gave 8-fold less potency against MMP-9 and about 30-fold less against MMP-2 than 4c. This is in contrast to SAR observed on the reported α-sulfone hydroxamate MMPI.² Interestingly, different from previously reported α - and β -sulfone hydroxamate series, 2,3,9,10 there was only a 10-fold potency loss on MMP-9 and a 3-fold loss on MMP-2 by replacing the hydroxamate ZBG (4d) with the carboxylic acid (4c). This suggested that the novel α-sulfonylcarboxylic acid scafold provides optimal interactions with enzyme subsites and therefore compensates for the loss of potent bidentate bindings with zinc cation and hydrogen bond interactions with the enzyme backbones offered by hydroxamates.

Since an ethyl phthalimido group proved to be the most favorable P_1/P_2 substituent and thus was chosen as the benchmark, we turned our attention to SAR of the P_1' substituent. A series of P_1' modifications were performed and the results of in vitro MMP-2/-9 inhibitions are shown in Table 2. It appeared that at least one oxygen on the sulfur of 4 is required for better interaction with

the enzyme backbone. The IC_{50} on MMP-9 for $4\mathbf{r}'$ (diastereomer mixture) was improved to 1.4 nM, 22-fold more potent than $4\mathbf{r}''$, however, an additional oxygen of $4\mathbf{r}$ gave only slight improvement. The linear, rigid

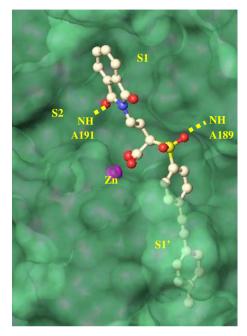


Figure 2. Compound 4r docked in homology model of MMP-9.

Table 2. MMP IC_{50} and SAR of P_1^\prime group of compounds 4

Compound ^a	X	R	MMP-2 ^b	MMP-9 ^b	
4c	•••	(4-Cl)Ph-	1.8	14.0	
4g	•	(4-OMe)Ph-	0.84	4.4	
4h	•	(4-CN)Ph-	3.0	15	
4i	•••	(4-Me)Ph-	1.2	4.9	
4j	•	(4-SMe)Ph-	0.74	0.96	
4k	•••	$(4-^{i}Pr)Ph-$	0.98	1.6	
41	••	(4-F)Ph-	6.5	53	
4m	••	:	4.4	20	
4n ¹¹	•••	(4-CF ₃)Ph-	0.7	1.8	
40	O	(4-OCF ₃)Ph-	19	23	
4 p	•-N	(4-Cl)Ph-	12	258	
4 q	•-N_N-•	(4-CN)Ph-	6.8	120	
4r	• = •	(4-Me)Ph-	0.7	0.5	
$4\mathbf{r}'\ (n=1)$	• =	(4-Me)Ph-	1.5	1.4	
$\mathbf{4r''}\ (n=0)$	<u>←</u> =→	(4-Me)Ph-	33	31	
4s	-=	(4-Et)Ph-	1.3 1.1	0.8 9.7	
4t	- ≡-	$(4-^nPr)Ph-$			
4u	•=	$(4-^nBu)Ph-$	2.3	22	
4v	•==•	$(4-^{i}Pr)Ph-$	1.7	5.1	
4w	•=• •=•	(4-OCF ₃)Ph-	1.3	0.6	
4x	⊷ ≡⊸	(4-Cl)Ph-	1.9	1.2	
	⊷ ≡⊸	(3-OMe)Ph-	4.0	25	
4y 4z ¹²	0	(4-OMe)Ph-	54	101	

^a n = 2 for all compounds except indicated otherwise. 4r' is a diastereomer mixture.

^b IC₅₀ (nM) the average value of at least two determinations.

Table 3. IC₅₀^a values against selected MMPs of 4n and 4r

Compound	MMP-1	MMP-2	MMP-3	MMP-9	MMP-13
4n	>1000	0.7	34	1.8	0.8
4r	>1000	0.7	28	0.5	1.4

^a IC₅₀ (nM) value of single determination.

Table 4. Pharmacokinetic parameters^a of **4c** and **4d** in rats and in vitro metabolism

Compound	C_0^{b} (μ M)	$T_{1/2}^{b}$ (h)	AUC^b (µg-h/mL)	$V_{\rm ss}^{b}$ (L/kg)	CL ^b (mL/min/kg)	$HLM^{c} T_{1/2} (min)$
4c	41.4	1.4	18.23	0.4	0.6	230
4d	13.9	0.98	2.94	0.1	2.9	12

^a Mean value of four animals (rat) at 0.5 mg/kg iv dose.

 P'_1 groups such as biaryl or biaryl acetylenyl groups were preferred. More flexible linkers between two phenyl groups of P'₁ resulted in loss of activity against MMP-9 (40, 4p, 4q, and 4z). The para-substitution on the terminal phenyl was preferred over substitution at the meta-position, 3'-OMe compound 4y gave an IC₅₀ value of 25 nM for MMP-9. Generally, hydrophobic, electrondonating substitutions on the terminal phenyl increased MMP potencies, for example, 4'-SMe on 4j gave an IC₅₀ value of 0.96 nM for MMP-9 and 0.74 nM for MMP-2. Polar, electron-withdrawing groups (EWG) such as -CN (4h), -F (4l), and -CF₃ (4m) shifted IC₅₀ values to double-digit nanomolar range. However, compound 4n, even with an EWG, fluorine, still gave excellent potency, illustrating benzoimidazole as an effective P'_1 group. Longer biaryl acetylenyl groups as P'₁ moiety were shown to be superior to biaryl groups for MMP-9 inhibition, although MMP-2 inhibitory activity was unchanged. Further variations on the terminal acetylenyl phenyl substitution were focused on hydrophobic, electron-rich groups based on the SAR of the biaryl P'_1 series. The MMP-2 inhibitory activities of compounds 4r-4x were insensitive to the length of the para-substituents. However, the methyl (4r) or ethyl (4s) derivatives have reached the maximal activities against MMP-9. The further elongation of the para-substitution leads to significant increase of the IC₅₀ values of MMP-9. These results agreed with the same SAR trend of P_1^\prime as the previously reported sulfonamide MMP inhibitors¹³ and suggest a rigid, hydrophobic S'_1 subsite with a floorboard at the bottom for MMP-9 and a tunnel-like S'_1 subsite with an open bottom for MMP-2.

The binding mode of compound 4r was proposed based on docking the molecule into a homology model of MMP-9 (Fig. 2). The modeling indicates that a linear biaryl acetylenyl group well fits into the S_1' pocket and the α -sulfonyl function forms a hydrogen bond interaction with Ala 189. The phthalimido side chain is located between the S_1 and S_2 pockets, and one of the carbonyls may form a hydrogen bond interaction with Ala 191. This may rationalize that an amide or imide side chain is critical for the maintenance of the activity. To our surprise, the modeling of 12b (not shown here) indicated that the α -sulfonyl group no longer had any interactions with Ala 189 and the biaryl group does not fit well into

the S'_1 pocket. This may contribute to the loss in activity against MMP-9 for **12b**.

The selectivity across several MMPs of the representative compounds is summarized in Table 3. As expected, $\bf 4n$ and $\bf 4r$ showed high selectivity over MMP-1, which has a shallow S_1' subsite, and moderate selectivity for MMP-9 vs. MMP-3 (20- to 50-fold). The compounds $\bf 4n$ and $\bf 4r$ are also potent MMP-13 inhibitors.

The pharmacokinetics of carboxylic acid $\mathbf{4c}$ and its hydroxamate analog $\mathbf{4d}$ in rats are evaluated in Table 4. Human liver microsomes (HLM) were also used to predict metabolic stability. Both the AUC and C_0 were improved for carboxylic acid $\mathbf{4c}$.

In summary, we have prepared a series of α -sulfone carboxylic acid inhibitors that are potent against MMP-2/-9 and selective over MMP-1. The SAR of both P'_1 and P_1/P_2 has shown that a straight, hydrophobic P'_1 group with the optimal length is preferred and an amido- or imido-type group is critical for MMP-9 inhibitory activity. The carboxylic acid series exhibits enhanced PK properties in rats compared to its hydroxamate analog. However, the protein binding data with highly lipophilic compounds such as 4r, 4s, and 4x are greater than 99%, indicating that these carboxylic acids are highly protein bound in the blood and therefore faced a hurdle for further development. We are continuing to optimize P_1/P_2 group of the carboxylate inhibitors to minimize the high protein binding issue and hope to report the results in due course.

Acknowledgment

The authors thank the Chem/Bio Support group for ADME tests.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2006.03.065.

^b C_0 : concentration at T = 0; $T_{1/2}$, apparent elimination half-life; AUC, area under the concentration-time curve; V_{ss} , volume of distribution at steady state; CL, systemic clearance.

^c Human liver microsome.

References and notes

- (a) Vihinen, P.; Ala-aho, R.; Kahari, V. Curr. Cancer Drug Targets 2005, 5, 203; (b) Handsley, M. M.; Edwards, D. R. Int. J. Cancer 2005, 115, 849; (c) Iannone, F.; Lapadula, G. Aging Clin. Exp. Res. 2003, 15, 364; (d) Tayebjee, M. H.; Lip, G. Y.; MacFadyen, R. J. Curr. Med. Chem 2005, 12, 917; (e) Yong, V. W. Expert Opin. Investig. Drugs 1999, 8, 255; (f) Gu, Z.; Cui, J.; Brown, S.; Fridman, R.; Mobashery, S.; Strongin, A. Y.; Lipton, S. A. J. Neurosci. 2005, 25, 640.
- (a) Aranapakam, V.; Grosu, T.; Davis, J.; Hu, B.; Ellingboe, J.; Baker, J.; Skotnicki, J.; Zask, A.; Sung, A.; Sharr, M.; Killar, L.; Walter, T.; Lin, G.; Cowling, R. J. Med. Chem 2003, 46, 2361; (b) Aranapakam, V.; Davis, J.; Grosu, T.; Baker, J.; Ellingboe, J.; Zask, A.; Levin, J.; Du, M.; Skotnicki, J.; Sung, A.; Sharr, M.; Killar, L.; Walter, T.; Lin, G.; Tillett, J.; Zhao, W.; Xu, Z. J. Med. Chem 2003, 46, 2376.
- 3. Becker, D. P.; Villamil, C. I.; Barta, T. E.; Bedell, L. J.; Boehm, T. L.; DeCrescenzo, G. A.; Freskos, J. N.; Getman, D. P.; Heintz, R.; Howard, S. C.; Li, M. H.; McDonold, J.; Carron, C.; Mehta, P.; Swearingen, C. A. J. Med. Chem 2005, 48, 6713.
- Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui, K.; Fuji, M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.; Yoshioka, T.; Kawada, K.; Sugita, K.; Ohtani, M. J. Med. Chem 1998, 41, 640.
- Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med. Chem. 2001, 8, 425.

- (a) Natchus, M. G.; Bookland, R. G.; Laufersweiler, M. J.; Pikul, S.; Almstead, N. G.; De, B.; Janusz, M. J.; Hsieh, L.; Gu, F.; Pokross, M.; Patel, V.; Garver, S.; Peng, S.; Branch, T. M.; King, S. L.; Baker, T. R.; Foltz, D.; Mieling, G. J. Med. Chem 2001, 44, 1060; (b) Leff, R. L. Ann. N.Y. Acad. Sci. 1999, 878, 201.
- For synthesis of 5 with R¹ = -(CH₂)_n Phth: Kolasa, T.; Miller, M. J. Org. Chem. 1990, 55, 4246.
- Chapman, J.; Cocolas, G.; Hall, I. J. Med. Chem 1983, 26, 243.
- Cholleta, A. M.; Le Diguarhera, T.; Kucharczyka, N.; Loynela, A.; Bertrandc, M.; Tuckerb, G.; Guilbaudb, N.; Burbridgeb, M.; Pastoureaub, P.; Fradinb, A.; Sabatinib, M.; Fauchèrea, J.; Casara, P. *Bioorg. Med. Chem.* 2002, 10, 531.
- Le Diguarher, T.; Chollet, M.; Bertrand, M.; Hennig, P.; Raimbaud, E.; Sabatini, M.; Guilbaud, N.; Pierré, A.; Tucker, G.; Casara, P. J. Med. Chem. 2003, 46, 3840.
- 11. For the synthesis of 4n:

$$\begin{array}{c} O \\ O_2 \\ Bu^1O \\ \end{array} \begin{array}{c} O_2 \\ S \\ \end{array} \begin{array}{c} O \\ OH \\ \end{array} \begin{array}{c} I. \ Swern \ ox. \\ II. \ H_2N \\ \\ NaHSO_3 \end{array} \begin{array}{c} TFA/CH_2CI_2 \\ \end{array} \begin{array}{c} 4n \\ \end{array}$$

- 12. The linker methyl ketone of **4z** was obtained through hydration of acetylene under TFA treatment at the last Boc cleavage step.
- 13. Kiyama, R.; Tamura, Y.; Watanabe, F.; Tsuzuki, H.; Ohtani, M.; Yodo, M. *J. Med. Chem* **1999**, *42*, 1723.